
StackGuard
Protecting Against Buffer Overflows

Part I – Detailed Overview

By Konstantin Rozinov

Polytechnic University
February 19, 2003

Outline Of Presentation

l What is a buffer?
l What is a buffer overflow?
l How does a buffer overflow work?
l What is StackGuard?
l How does StackGuard work?
l Live Demo
l Limitations and Defeats of StackGuard.
l Conclusions
l Links

What Is A Buffer?

l Buffers: a contiguous place in memory where
bits can be put (i.e. Arrays).
– Heap-allocated: Using malloc, calloc, realloc to

allocate buffers during runtime via pointers.
– Stack-allocated: Used to store function (local)

variables, parameters, and almost everything else
(stack frames).

– Global variables and static variables are held in
the data segment and the BSS (Block Started by
Symbol).

What Is A Buffer Overflow?

l A buffer overflow occurs when you try to put
too many bits into an allocated buffer.

l When this happens, the next contiguous
chunk of memory is overwritten, with the
extra bits.

l As you can guess, this can lead to a serious
security problem.

How Does A Buffer Overflow Work?

1. Overflow a buffer within a function.
2. Overwrite the return address of the function

with another address (where your attack
code starts).

3. The attack code is usually inside the original
buffer (hopefully it’s big enough).

4. Execute the code, get root.

How Does A Buffer Overflow Work?

The egg contains the shellcode, NOPs, and return addresses,
as can be seen below. The shellcode is a simple program,
compiled (gcc), and disassemble with gdb:

"\xeb\x1d\x5e\x29\xc0\x88\x46\x07\x89\x46\x0c\x89\x76\x08\
xb0\x0b\x87\xf3\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\x29\xc0\x4
0\xcd\x80\xe8\xde\xff\xff\xff/bin/sh"

What Is StackGuard?

l A small patch for the GNU gcc compiler, which
enhances the way gcc generates the code for setting
up and tearing down functions (activation records –
stack frames). Specifically, these functions are the
function_prolog() and function_epilog()
routines.

l Stack-smashing attacks exploit buffer overflows
within the stack. StackGuard detects and defeats
stack smashing attacks by protecting the return
address on the stack from being altered.

How Does StackGuard Work?

l StackGuard places a “canary” word next to
(prior) the return address on the stack.

l Once the function is done, the new tear down
code from gcc first checks to make sure that
the canary word is unmodified and intact
before jumping to the return address.

l If the integrity of canary word is
compromised, the program will terminate.

How Does StackGuard Work?

How Does StackGuard Work?

l To prevent the forging of the canary from
within the overflow string (the egg),
StackGuard can do two things:
– Use a Terminator Canary
– Use a Random Canary
– Use a Null Canary (not used anymore)

How Does StackGuard Work?

l Use a Terminator Canary: comprised of common
termination symbols for C standard string library
functions - \0, CR, LF, and -1 (EOF). The egg
cannot contain these symbols and thus cannot be
copied into the memory space. The one used in
StackGuard 2.01 is 0x000aff0d.

l 0x00 (null) will stop strcpy(), 0x0a will stop gets(),
etc. return address will not be overwritten.

How Does StackGuard Work?

l Use a Random Canary: a 32-bit random
number chosen at program runtime. The
attacker cannot learn the canary value prior
to program start by searching the executable
image. The random value is taken from
/dev/urandom if available, and created by
hashing the time of day if /dev/urandom is
not supported.

How Does StackGuard Work?

l Use a Null Canary the canary word is "null",
i.e. 0x00000000. Since most string
operations that are exploited by stack
smashing attacks terminate on null, the
attacker cannot easily spoof a series of nulls
into the middle of the string. The Null Canary
has been superseded by the Terminator
Canary.

Live Demo

l Compile rootecho (CS392 – hw#5) without
StackGuard.
– Should be able to get root shell.

l Compile rootecho with StackGuard.
– The program should terminate and not result in a

root shell.

Live Demo

l Without StackGuard:

Live Demo

l With StackGuard:

Limitations and Defeats of StackGuard

l Function parameters are not protected.
l Frame pointers can be altered.
l Local variables can be controlled.

l Solution: Illegal frame pointer alterations can be
stopped by placing the canary prior to it instead of
after it. (StackGuard 3.0 will do this). However, local
variables and function parameters will still be
vulnerable.

Conclusions

l StackGuard has been shown to be effective
against stack smashing attacks, while
preserving virtually all of system compatibility
and performance.

l The creators have built an entire Redhat
Linux distribution protected with StackGuard
and it is functional and being used on
production machines.

Conclusions – Penetration Resistance

Conclusions – Performance

Links

l http://www.immunix.org/stackguard.html
– Many good links here about StackGuard

l http://isis.poly.edu/courses/cs392-
f2002/labs/lab5.pdf
– How to create and implement buffer overflows

l http://ouah.sysdoor.net/gerastackguard.pdf
– How to bypass the StackGuard protection

mechanism

